src/demux/exp-golomb.js
/**
* Parser for exponential Golomb codes, a variable-bitwidth number encoding scheme used by h264.
*/
import { logger } from '../utils/logger';
class ExpGolomb {
constructor (data) {
this.data = data;
// the number of bytes left to examine in this.data
this.bytesAvailable = data.byteLength;
// the current word being examined
this.word = 0; // :uint
// the number of bits left to examine in the current word
this.bitsAvailable = 0; // :uint
}
// ():void
loadWord () {
let
data = this.data,
bytesAvailable = this.bytesAvailable,
position = data.byteLength - bytesAvailable,
workingBytes = new Uint8Array(4),
availableBytes = Math.min(4, bytesAvailable);
if (availableBytes === 0)
throw new Error('no bytes available');
workingBytes.set(data.subarray(position, position + availableBytes));
this.word = new DataView(workingBytes.buffer).getUint32(0);
// track the amount of this.data that has been processed
this.bitsAvailable = availableBytes * 8;
this.bytesAvailable -= availableBytes;
}
// (count:int):void
skipBits (count) {
let skipBytes; // :int
if (this.bitsAvailable > count) {
this.word <<= count;
this.bitsAvailable -= count;
} else {
count -= this.bitsAvailable;
skipBytes = count >> 3;
count -= (skipBytes >> 3);
this.bytesAvailable -= skipBytes;
this.loadWord();
this.word <<= count;
this.bitsAvailable -= count;
}
}
// (size:int):uint
readBits (size) {
let
bits = Math.min(this.bitsAvailable, size), // :uint
valu = this.word >>> (32 - bits); // :uint
if (size > 32)
logger.error('Cannot read more than 32 bits at a time');
this.bitsAvailable -= bits;
if (this.bitsAvailable > 0)
this.word <<= bits;
else if (this.bytesAvailable > 0)
this.loadWord();
bits = size - bits;
if (bits > 0 && this.bitsAvailable)
return valu << bits | this.readBits(bits);
else
return valu;
}
// ():uint
skipLZ () {
let leadingZeroCount; // :uint
for (leadingZeroCount = 0; leadingZeroCount < this.bitsAvailable; ++leadingZeroCount) {
if ((this.word & (0x80000000 >>> leadingZeroCount)) !== 0) {
// the first bit of working word is 1
this.word <<= leadingZeroCount;
this.bitsAvailable -= leadingZeroCount;
return leadingZeroCount;
}
}
// we exhausted word and still have not found a 1
this.loadWord();
return leadingZeroCount + this.skipLZ();
}
// ():void
skipUEG () {
this.skipBits(1 + this.skipLZ());
}
// ():void
skipEG () {
this.skipBits(1 + this.skipLZ());
}
// ():uint
readUEG () {
let clz = this.skipLZ(); // :uint
return this.readBits(clz + 1) - 1;
}
// ():int
readEG () {
let valu = this.readUEG(); // :int
if (0x01 & valu) {
// the number is odd if the low order bit is set
return (1 + valu) >>> 1; // add 1 to make it even, and divide by 2
} else {
return -1 * (valu >>> 1); // divide by two then make it negative
}
}
// Some convenience functions
// :Boolean
readBoolean () {
return this.readBits(1) === 1;
}
// ():int
readUByte () {
return this.readBits(8);
}
// ():int
readUShort () {
return this.readBits(16);
}
// ():int
readUInt () {
return this.readBits(32);
}
/**
* Advance the ExpGolomb decoder past a scaling list. The scaling
* list is optionally transmitted as part of a sequence parameter
* set and is not relevant to transmuxing.
* @param count {number} the number of entries in this scaling list
* @see Recommendation ITU-T H.264, Section 7.3.2.1.1.1
*/
skipScalingList (count) {
let
lastScale = 8,
nextScale = 8,
j,
deltaScale;
for (j = 0; j < count; j++) {
if (nextScale !== 0) {
deltaScale = this.readEG();
nextScale = (lastScale + deltaScale + 256) % 256;
}
lastScale = (nextScale === 0) ? lastScale : nextScale;
}
}
/**
* Read a sequence parameter set and return some interesting video
* properties. A sequence parameter set is the H264 metadata that
* describes the properties of upcoming video frames.
* @param data {Uint8Array} the bytes of a sequence parameter set
* @return {object} an object with configuration parsed from the
* sequence parameter set, including the dimensions of the
* associated video frames.
*/
readSPS () {
let
frameCropLeftOffset = 0,
frameCropRightOffset = 0,
frameCropTopOffset = 0,
frameCropBottomOffset = 0,
profileIdc, profileCompat, levelIdc,
numRefFramesInPicOrderCntCycle, picWidthInMbsMinus1,
picHeightInMapUnitsMinus1,
frameMbsOnlyFlag,
scalingListCount,
i,
readUByte = this.readUByte.bind(this),
readBits = this.readBits.bind(this),
readUEG = this.readUEG.bind(this),
readBoolean = this.readBoolean.bind(this),
skipBits = this.skipBits.bind(this),
skipEG = this.skipEG.bind(this),
skipUEG = this.skipUEG.bind(this),
skipScalingList = this.skipScalingList.bind(this);
readUByte();
profileIdc = readUByte(); // profile_idc
profileCompat = readBits(5); // constraint_set[0-4]_flag, u(5)
skipBits(3); // reserved_zero_3bits u(3),
levelIdc = readUByte(); // level_idc u(8)
skipUEG(); // seq_parameter_set_id
// some profiles have more optional data we don't need
if (profileIdc === 100 ||
profileIdc === 110 ||
profileIdc === 122 ||
profileIdc === 244 ||
profileIdc === 44 ||
profileIdc === 83 ||
profileIdc === 86 ||
profileIdc === 118 ||
profileIdc === 128) {
let chromaFormatIdc = readUEG();
if (chromaFormatIdc === 3)
skipBits(1); // separate_colour_plane_flag
skipUEG(); // bit_depth_luma_minus8
skipUEG(); // bit_depth_chroma_minus8
skipBits(1); // qpprime_y_zero_transform_bypass_flag
if (readBoolean()) { // seq_scaling_matrix_present_flag
scalingListCount = (chromaFormatIdc !== 3) ? 8 : 12;
for (i = 0; i < scalingListCount; i++) {
if (readBoolean()) { // seq_scaling_list_present_flag[ i ]
if (i < 6)
skipScalingList(16);
else
skipScalingList(64);
}
}
}
}
skipUEG(); // log2_max_frame_num_minus4
let picOrderCntType = readUEG();
if (picOrderCntType === 0) {
readUEG(); // log2_max_pic_order_cnt_lsb_minus4
} else if (picOrderCntType === 1) {
skipBits(1); // delta_pic_order_always_zero_flag
skipEG(); // offset_for_non_ref_pic
skipEG(); // offset_for_top_to_bottom_field
numRefFramesInPicOrderCntCycle = readUEG();
for (i = 0; i < numRefFramesInPicOrderCntCycle; i++)
skipEG(); // offset_for_ref_frame[ i ]
}
skipUEG(); // max_num_ref_frames
skipBits(1); // gaps_in_frame_num_value_allowed_flag
picWidthInMbsMinus1 = readUEG();
picHeightInMapUnitsMinus1 = readUEG();
frameMbsOnlyFlag = readBits(1);
if (frameMbsOnlyFlag === 0)
skipBits(1); // mb_adaptive_frame_field_flag
skipBits(1); // direct_8x8_inference_flag
if (readBoolean()) { // frame_cropping_flag
frameCropLeftOffset = readUEG();
frameCropRightOffset = readUEG();
frameCropTopOffset = readUEG();
frameCropBottomOffset = readUEG();
}
let pixelRatio = [1, 1];
if (readBoolean()) {
// vui_parameters_present_flag
if (readBoolean()) {
// aspect_ratio_info_present_flag
const aspectRatioIdc = readUByte();
switch (aspectRatioIdc) {
case 1: pixelRatio = [1, 1]; break;
case 2: pixelRatio = [12, 11]; break;
case 3: pixelRatio = [10, 11]; break;
case 4: pixelRatio = [16, 11]; break;
case 5: pixelRatio = [40, 33]; break;
case 6: pixelRatio = [24, 11]; break;
case 7: pixelRatio = [20, 11]; break;
case 8: pixelRatio = [32, 11]; break;
case 9: pixelRatio = [80, 33]; break;
case 10: pixelRatio = [18, 11]; break;
case 11: pixelRatio = [15, 11]; break;
case 12: pixelRatio = [64, 33]; break;
case 13: pixelRatio = [160, 99]; break;
case 14: pixelRatio = [4, 3]; break;
case 15: pixelRatio = [3, 2]; break;
case 16: pixelRatio = [2, 1]; break;
case 255: {
pixelRatio = [readUByte() << 8 | readUByte(), readUByte() << 8 | readUByte()];
break;
}
}
}
}
return {
width: Math.ceil((((picWidthInMbsMinus1 + 1) * 16) - frameCropLeftOffset * 2 - frameCropRightOffset * 2)),
height: ((2 - frameMbsOnlyFlag) * (picHeightInMapUnitsMinus1 + 1) * 16) - ((frameMbsOnlyFlag ? 2 : 4) * (frameCropTopOffset + frameCropBottomOffset)),
pixelRatio: pixelRatio
};
}
readSliceType () {
// skip NALu type
this.readUByte();
// discard first_mb_in_slice
this.readUEG();
// return slice_type
return this.readUEG();
}
}
export default ExpGolomb;